When.com Web Search

  1. Ads

    related to: 13/56 + 5/7 fraction answer line up 2

Search results

  1. Results From The WOW.Com Content Network
  2. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 22, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two , e.g. ⁠ 1 / 8 ⁠ = ⁠ 1 / 2 3 ⁠ .

  3. Number Forms - Wikipedia

    en.wikipedia.org/wiki/Number_Forms

    1 ⁄ 7: 0.142... Vulgar Fraction One Seventh 2150 8528 ⅑ 1 ⁄ 9: 0.111... Vulgar Fraction One Ninth 2151 8529 ⅒ 1 ⁄ 10: 0.1 Vulgar Fraction One Tenth 2152 8530 ⅓ 1 ⁄ 3: 0.333... Vulgar Fraction One Third 2153 8531 ⅔ 2 ⁄ 3: 0.666... Vulgar Fraction Two Thirds 2154 8532 ⅕ 1 ⁄ 5: 0.2 Vulgar Fraction One Fifth 2155 8533 ⅖ 2 ...

  4. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    For example, ⁠ 1 / 4 ⁠, ⁠ 5 / 6 ⁠, and ⁠ −101 / 100 ⁠ are all irreducible fractions. On the other hand, ⁠ 2 / 4 ⁠ is reducible since it is equal in value to ⁠ 1 / 2 ⁠, and the numerator of ⁠ 1 / 2 ⁠ is less than the numerator of ⁠ 2 / 4 ⁠. A fraction that is reducible can be reduced by dividing both the numerator ...

  5. Unit fraction - Wikipedia

    en.wikipedia.org/wiki/Unit_fraction

    Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n.It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number.

  6. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    A continued fraction is an expression of the form = + + + + + where the a n (n > 0) are the partial numerators, the b n are the partial denominators, and the leading term b 0 is called the integer part of the continued fraction.

  7. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    By applying the fundamental recurrence formulas we may easily compute the successive convergents of this continued fraction to be 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, ..., where each successive convergent is formed by taking the numerator plus the denominator of the preceding term as the denominator in the next term, then adding in the ...