Search results
Results From The WOW.Com Content Network
For the statistic t, with ν degrees of freedom, A(t | ν) is the probability that t would be less than the observed value if the two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily calculated from the cumulative distribution function F ν (t) of the t distribution:
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods give identical results. This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The ...
Compute from the observations the observed value t obs of the test statistic T. Decide to either reject the null hypothesis in favor of the alternative or not reject it. The Neyman-Pearson decision rule is to reject the null hypothesis H 0 if the observed value t obs is in the critical region, and not to reject the null hypothesis otherwise. [31]
However, the central t-distribution can be used as an approximation to the noncentral t-distribution. [7] If T is noncentral t-distributed with ν degrees of freedom and noncentrality parameter μ and F = T 2, then F has a noncentral F-distribution with 1 numerator degree of freedom, ν denominator degrees of freedom, and noncentrality ...
where t is a random variable distributed as Student's t-distribution with ν − 1 degrees of freedom. In fact, this implies that t i 2 /ν follows the beta distribution B(1/2,(ν − 1)/2). The distribution above is sometimes referred to as the tau distribution; [2] it was first derived by Thompson in 1935. [3]
For example, to calculate the 95% prediction interval for a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 1, then z is approximately 2. Therefore, the lower limit of the prediction interval is approximately 5 ‒ (2⋅1) = 3, and the upper limit is approximately 5 + (2⋅1) = 7, thus giving a prediction interval of ...
A t-test can be used to account for the uncertainty in the sample variance when the data are exactly normal. Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown.