Search results
Results From The WOW.Com Content Network
In graph theory, a vertex is incident with an edge if the vertex is one of the two vertices the edge connects. An incidence is a pair ( u , e ) {\displaystyle (u,e)} where u {\displaystyle u} is a vertex and e {\displaystyle e} is an edge incident with u {\displaystyle u} .
An incidence in a graph is a vertex-edge pair such that the vertex is an endpoint of the edge. incidence matrix The incidence matrix of a graph is a matrix whose rows are indexed by vertices of the graph, and whose columns are indexed by edges, with a one in the cell for row i and column j when vertex i and edge j are incident, and a zero ...
The degree or valency of a vertex is the number of edges that are incident to it, where a loop is counted twice. The degree of a graph is the maximum of the degrees of its vertices. In an undirected simple graph of order n , the maximum degree of each vertex is n − 1 and the maximum size of the graph is n ( n − 1) / 2 .
The edge is said to join u and v and to be incident on them. A vertex may belong to no edge, in which case it is not joined to any other vertex and is called isolated. When an edge {,} exists, the vertices u and v are called adjacent. A multigraph is a generalization that allows multiple edges to have the same pair of endpoints. In some texts ...
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
An edge-graceful labeling on a simple graph without loops or multiple edges on p vertices and q edges is a labeling of the edges by distinct integers in {1, …, q} such that the labeling on the vertices induced by labeling a vertex with the sum of the incident edges taken modulo p assigns all values from 0 to p − 1 to the vertices.
Additional data can be stored if edges are also stored as objects, in which case each vertex stores its incident edges and each edge stores its incident vertices. Adjacency matrix [ 3 ] A two-dimensional matrix, in which the rows represent source vertices and columns represent destination vertices.
An edge coloring of a graph is a proper coloring of the edges, meaning an assignment of colors to edges so that no vertex is incident to two edges of the same color. An edge coloring with k colors is called a k -edge-coloring and is equivalent to the problem of partitioning the edge set into k matchings .