When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fréchet derivative - Wikipedia

    en.wikipedia.org/wiki/Fréchet_derivative

    In mathematics, the Fréchet derivative is a derivative defined on normed spaces.Named after Maurice Fréchet, it is commonly used to generalize the derivative of a real-valued function of a single real variable to the case of a vector-valued function of multiple real variables, and to define the functional derivative used widely in the calculus of variations.

  3. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  4. Gateaux derivative - Wikipedia

    en.wikipedia.org/wiki/Gateaux_derivative

    Furthermore, if is (complex) Gateaux differentiable at each with derivative (): (;) then is Fréchet differentiable on with Fréchet derivative . This is analogous to the result from basic complex analysis that a function is analytic if it is complex differentiable in an open set, and is a fundamental result in the study of infinite dimensional ...

  5. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  6. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...

  7. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    Let f denote a real-valued function defined on a subset I of the real numbers.. If a ∈ I is a limit point of I ∩ [a,∞) and the one-sided limit + ():= + () exists as a real number, then f is called right differentiable at a and the limit ∂ + f(a) is called the right derivative of f at a.

  8. Reciprocal rule - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_rule

    The reciprocal rule states that if f is differentiable at a point x and f(x) ≠ 0 then g(x) = 1/f(x) is also differentiable at x and ...

  9. Weak derivative - Wikipedia

    en.wikipedia.org/wiki/Weak_derivative

    In mathematics, a weak derivative is a generalization of the concept of the derivative of a function (strong derivative) for functions not assumed differentiable, but only integrable, i.e., to lie in the L p space ([,]).