Search results
Results From The WOW.Com Content Network
In the classical central-force problem of classical mechanics, some potential energy functions () produce motions or orbits that can be expressed in terms of well-known functions, such as the trigonometric functions and elliptic functions. This article describes these functions and the corresponding solutions for the orbits.
The following other wikis use this file: Usage on af.wikipedia.org James Clerk Maxwell; Usage on ar.wikipedia.org تاريخ نظرية الكهرطيسية
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.
[12] [13]: 150 The physics concept of force makes quantitative the everyday idea of a push or a pull. Forces in Newtonian mechanics are often due to strings and ropes, friction, muscle effort, gravity, and so forth. Like displacement, velocity, and acceleration, force is a vector quantity.
The Force Concept Inventory is a test measuring mastery of concepts commonly taught in a first semester of physics developed by Hestenes, Halloun, Wells, and Swackhamer (1985). It was the first such " concept inventory " and several others have been developed since for a variety of topics.
A diagram of Central forces. In classical mechanics, a central force on an object is a force that is directed towards or away from a point called center of force. [a] [1]: 93 = = | | ^ where is the force, F is a vector valued force function, F is a scalar valued force function, r is the position vector, ||r|| is its length, and ^ = / ‖ ‖ is the corresponding unit vector.
Hydrogen-like atom, a special case (inverse-square central force) Topics referred to by the same term This disambiguation page lists articles associated with the title Central-force problem .
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n -body problem for details).