Ads
related to: polynomial problems examplesstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Route inspection problem (also called Chinese postman problem) for mixed graphs (having both directed and undirected edges). The program is solvable in polynomial time if the graph has all undirected or all directed edges. Variants include the rural postman problem. [3]: ND25, ND27 Clique cover problem [2] [3]: GT17
NP-hard problems are those at least as hard as NP problems; i.e., all NP problems can be reduced (in polynomial time) to them. NP-hard problems need not be in NP; i.e., they need not have solutions verifiable in polynomial time. For instance, the Boolean satisfiability problem is NP-complete by the Cook–Levin theorem, so any instance of any ...
NP is the set of decision problems solvable in polynomial time by a nondeterministic Turing machine. NP is the set of decision problems verifiable in polynomial time by a deterministic Turing machine. The first definition is the basis for the abbreviation NP; "nondeterministic, polynomial time". These two definitions are equivalent because the ...
A problem is NP-complete if it is both in NP and NP-hard. The NP-complete problems represent the hardest problems in NP. If some NP-complete problem has a polynomial time algorithm, all problems in NP do. The set of NP-complete problems is often denoted by NP-C or NPC.
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
Such problems arise in approximation algorithms; a famous example is the directed Steiner tree problem, for which there is a quasi-polynomial time approximation algorithm achieving an approximation factor of () (n being the number of vertices), but showing the existence of such a polynomial time algorithm is an open problem.
For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and ...
A simple example of an NP-hard problem is the subset sum problem. Informally, if H is NP-hard, then it is at least as difficult to solve as the problems in NP . However, the opposite direction is not true: some problems are undecidable , and therefore even more difficult to solve than all problems in NP, but they are probably not NP-hard ...