When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Domain of a function - Wikipedia

    en.wikipedia.org/wiki/Domain_of_a_function

    The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...

  3. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    Any monotonically increasing function, by its definition, [9] may be applied to both sides of an inequality without breaking the inequality relation (provided that both expressions are in the domain of that function). However, applying a monotonically decreasing function to both sides of an inequality means the inequality relation would be ...

  4. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    Cauchy–Schwarz inequality (Modified Schwarz inequality for 2-positive maps [27]) — For a 2-positive map between C*-algebras, for all , in its domain, () ‖ ‖ (), ‖ ‖ ‖ ‖ ‖ ‖. Another generalization is a refinement obtained by interpolating between both sides of the Cauchy–Schwarz inequality:

  5. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    In mathematics, the Poincaré inequality [1] is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.

  6. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    The domain of definition of such a function is the set of inputs for which the algorithm does not run forever. A fundamental theorem of computability theory is that there cannot exist an algorithm that takes an arbitrary general recursive function as input and tests whether 0 belongs to its domain of definition (see Halting problem).

  7. Domain (mathematical analysis) - Wikipedia

    en.wikipedia.org/wiki/Domain_(mathematical_analysis)

    For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function. In the study of several complex variables, the definition of a domain is extended to include any connected open subset of C n.

  8. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution

  9. Constraint satisfaction - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction

    Variable elimination and the simplex algorithm are used for solving linear and polynomial equations and inequalities, and problems containing variables with infinite domain. These are typically solved as optimization problems in which the optimized function is the number of violated constraints.