When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    A matrix is in row echelon form if . All rows having only zero entries are at the bottom. [1]The leading entry (that is, the left-most nonzero entry) of every nonzero row, called the pivot, is on the right of the leading entry of every row above.

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    A matrix is a rectangular array of numbers (or other mathematical objects), called the entries of the matrix. Matrices are subject to standard operations such as addition and multiplication. [2]

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Pseudoinverse — a generalization of the inverse matrix. Row echelon form — a matrix in this form is the result of applying the forward elimination procedure to a matrix (as used in Gaussian elimination). Wronskian — the determinant of a matrix of functions and their derivatives such that row n is the (n−1) th derivative of row one.

  5. Canonical form - Wikipedia

    en.wikipedia.org/wiki/Canonical_form

    A canonical form may simply be a convention, or a deep theorem. For example, polynomials are conventionally written with the terms in descending powers: it is more usual to write x 2 + x + 30 than x + 30 + x 2, although the two forms define the same polynomial. By contrast, the existence of Jordan canonical form for a matrix is a deep theorem.

  6. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    In this case, the determinant of the resulting row echelon form equals the determinant of the initial matrix. As a row echelon form is a triangular matrix, its determinant is the product of the entries of its diagonal. So, the determinant can be computed for almost free from the result of a Gaussian elimination.

  7. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  8. Category:Matrix normal forms - Wikipedia

    en.wikipedia.org/wiki/Category:Matrix_normal_forms

    A matrix normal form or matrix canonical form describes the transformation of a matrix to another with special properties. Pages in category "Matrix normal forms" The following 10 pages are in this category, out of 10 total.

  9. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    This real Jordan form is a consequence of the complex Jordan form. For a real matrix the nonreal eigenvectors and generalized eigenvectors can always be chosen to form complex conjugate pairs. Taking the real and imaginary part (linear combination of the vector and its conjugate), the matrix has this form with respect to the new basis.