Ad
related to: spectrum of light
Search results
Results From The WOW.Com Content Network
White light is dispersed by a glass prism into the colors of the visible spectrum. The visible spectrum is the band of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called visible light (or simply light).
The light that excites the human visual system is a very small portion of the electromagnetic spectrum. A rainbow shows the optical (visible) part of the electromagnetic spectrum; infrared (if it could be seen) would be located just beyond the red side of the rainbow whilst ultraviolet would appear just beyond the opposite violet end.
Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. [1] Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahertz .
Full-spectrum light is light that covers the electromagnetic spectrum from infrared to near-ultraviolet, or all wavelengths that are useful to plant or animal life; in particular, sunlight is considered full spectrum, even though the solar spectral distribution reaching Earth changes with time of day, latitude, and atmospheric conditions.
The classical example of a continuous spectrum, from which the name is derived, is the part of the spectrum of the light emitted by excited atoms of hydrogen that is due to free electrons becoming bound to a hydrogen ion and emitting photons, which are smoothly spread over a wide range of wavelengths, in contrast to the discrete lines due to ...
The spectrum in a rainbow. A spectrum (pl.: spectra or spectrums) [1] is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word spectrum was first used scientifically in optics to describe the rainbow of colors in visible light after passing through a prism.
The matter-composition of the medium through which the light travels determines the nature of the absorption and emission spectrum. These bands correspond to the allowed energy levels in the atoms. Dark bands in the absorption spectrum are due to the atoms in an intervening medium between source and observer.
By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics , absorption of electromagnetic radiation is how matter (typically electrons bound in atoms ) takes up a photon 's energy —and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy ).