Search results
Results From The WOW.Com Content Network
Exponential growth is the inverse of logarithmic growth. Not all cases of growth at an always increasing rate are instances of exponential growth. For example the function () = grows at an ever increasing rate, but is much slower than growing exponentially.
Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.
Relative growth rate (RGR) is growth rate relative to size - that is, a rate of growth per unit time, as a proportion of its size at that moment in time. It is also called the exponential growth rate, or the continuous growth rate.
For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...
The derivative (rate of change) of the exponential function is the exponential function itself. More generally, a function with a rate of change proportional to the function itself is expressible in terms of the exponential function. This derivative property leads to exponential growth or exponential decay.
r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation: =
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
The equation for exponential mass growth rate in plant growth analysis is often expressed as: = Where: M(t) is the final mass of the plant at time (t). M 0 is the initial mass of the plant. RGR is the relative growth rate. RGR can then be written as: