When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Void coefficient - Wikipedia

    en.wikipedia.org/wiki/Void_coefficient

    Boiling water reactors generally have negative void coefficients, and in normal operation the negative void coefficient allows reactor power to be adjusted by changing the rate of water flow through the core. The negative void coefficient can cause an unplanned reactor power increase in events (such as sudden closure of a streamline valve ...

  3. Light-water reactor - Wikipedia

    en.wikipedia.org/wiki/Light-water_reactor

    Most reactor systems employ a cooling system that is physically separate from the water that will be boiled to produce pressurized steam for the turbines, like the pressurized-water reactor. But in some reactors the water for the steam turbines is boiled directly by the reactor core, for example the boiling-water reactor.

  4. Loss-of-coolant accident - Wikipedia

    en.wikipedia.org/wiki/Loss-of-coolant_accident

    This is measured by the coolant void coefficient. Most modern nuclear power plants have a negative void coefficient, indicating that as water turns to steam, power instantly decreases. Two exceptions are the Soviet RBMK and the Canadian CANDU. Boiling water reactors, on the other hand, are designed to have steam voids inside the reactor vessel.

  5. Fuel temperature coefficient of reactivity - Wikipedia

    en.wikipedia.org/wiki/Fuel_temperature...

    Fuel temperature coefficient of reactivity is the change in reactivity of the nuclear fuel per degree change in the fuel temperature. The coefficient quantifies the amount of neutrons that the nuclear fuel (such as uranium-238 ) absorbs from the fission process as the fuel temperature increases.

  6. RBMK - Wikipedia

    en.wikipedia.org/wiki/RBMK

    Such a condition is called a "positive void coefficient", and the RBMK reactor series has the highest positive void coefficient of any commercial reactor ever designed. A high void coefficient does not necessarily make a reactor inherently unsafe, as some of the fission neutrons are emitted with a delay of seconds or even minutes (post-fission ...

  7. Integral fast reactor - Wikipedia

    en.wikipedia.org/wiki/Integral_fast_reactor

    The integral fast reactor (IFR), originally the advanced liquid-metal reactor (ALMR), is a design for a nuclear reactor using fast neutrons and no neutron moderator (a "fast" reactor). IFRs can breed more fuel and are distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.

  8. Passive nuclear safety - Wikipedia

    en.wikipedia.org/wiki/Passive_nuclear_safety

    Such reactors would be described as fitted with such a passive safety component that could – if so designed – render in a reactor a negative void coefficient of reactivity, regardless of the operational property of the reactor in which it is fitted. The feature would only work if it responded faster than an emerging (steam) void and the ...

  9. Prototype Fast Breeder Reactor - Wikipedia

    en.wikipedia.org/wiki/Prototype_Fast_Breeder_Reactor

    The prototype fast breeder reactor has a negative void coefficient, thus ensuring a high level of passive nuclear safety. This means that when the reactor overheats (below the boiling point of sodium) the speed of the fission chain reaction decreases, lowering the power level and the temperature. [25]