Search results
Results From The WOW.Com Content Network
Aspartate transaminase (AST) or aspartate aminotransferase, also known as AspAT/ASAT/AAT or (serum) glutamic oxaloacetic transaminase (GOT, SGOT), is a pyridoxal phosphate (PLP)-dependent transaminase enzyme (EC 2.6.1.1) that was first described by Arthur Karmen and colleagues in 1954.
The AST/ALT ratio or De Ritis ratio is the ratio between the concentrations of two enzymes, aspartate transaminase (AST) and alanine transaminase, aka alanine aminotransferase (ALT), in the blood of a human or animal. It is used as one of several liver function tests, and measured with a blood test.
Normal ranges for both ALT and AST vary by gender, age, and geography and are roughly 8-40 U/L (0.14-0.67 μkal/L). [4] Mild transaminesemia refers to levels up to 250 U/L. [ 1 ] Drug-induced increases such as that found with the use of anti-tuberculosis agents such as isoniazid are limited typically to below 100 U/L for either ALT or AST.
Standard liver tests for assessing liver damage include alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). Bilirubin may be used to estimate the excretory function of the liver and coagulation tests and albumin can be used to evaluate the metabolic activity of the liver.
Aspartate aminotransferase, cytoplasmic is an enzyme that in humans is encoded by the GOT1 gene. [5] [6] Glutamic-oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in cytoplasmic and mitochondrial forms, GOT1 and GOT2, respectively. GOT plays a role in amino acid metabolism and the urea and tricarboxylic acid ...
Aspartate aminotransferase, mitochondrial is an enzyme that in humans is encoded by the GOT2 gene. Glutamic-oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in cytoplasmic and inner-membrane mitochondrial forms, GOT1 and GOT2, respectively. GOT plays a role in amino acid metabolism and the urea and Kreb's cycle.
An aminotransferase may be specific for an individual amino acid, or it may be able to process any member of a group of similar ones, for example the branched-chain amino acids, which comprises valine, isoleucine, and leucine. The two common types of aminotransferases are alanine aminotransferase (ALT) and aspartate aminotransferase (AST).
Aspartate aminotransferase can act on several different amino acids The grouping consistent with transfer of nitrogenous groups is EC 2.6. This includes enzymes like transaminase (also known as "aminotransferase"), and a very small number of oximinotransferases and other nitrogen group transferring enzymes.