When.com Web Search

  1. Ads

    related to: examples of points and lines in math problems with solutions 5th level

Search results

  1. Results From The WOW.Com Content Network
  2. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    These are the connected components of the points that would remain after removing all points on lines. [1] The edges or panels of the arrangement are one-dimensional regions belonging to a single line. They are the open line segments and open infinite rays into which each line is partitioned by its crossing points with the other lines.

  3. Locus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Locus_(mathematics)

    Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.

  4. Projective plane - Wikipedia

    en.wikipedia.org/wiki/Projective_plane

    Graph of the projective plane of order 7, having 57 points, 57 lines, 8 points on each line and 8 lines passing through each point, where each point is denoted by a rounded rectangle and each line by a combination of letter and number. Only lines with letter A and H are drawn. In the Dobble or Spot It! game, two points are removed.

  5. Linear space (geometry) - Wikipedia

    en.wikipedia.org/wiki/Linear_space_(geometry)

    Let L = (P, G, I) be an incidence structure, for which the elements of P are called points and the elements of G are called lines. L is a linear space if the following three axioms hold: (L1) two distinct points are incident with exactly one line. (L2) every line is incident to at least two distinct points. (L3) L contains at least two distinct ...

  6. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    There are two types, points and lines, and one "incidence" relation between points and lines. The three axioms are: G1: Every line contains at least 3 points; G2: Every two distinct points, A and B, lie on a unique line, AB. G3: If lines AB and CD intersect, then so do lines AC and BD (where it is assumed that A and D are distinct from B and C).

  7. Affine plane (incidence geometry) - Wikipedia

    en.wikipedia.org/wiki/Affine_plane_(incidence...

    Given a point and a line, there is a unique line which contains the point and is parallel to the line. Parallelism is an equivalence relation on the lines of an affine plane. Since no concepts other than those involving the relationship between points and lines are involved in the axioms, an affine plane is an object of study belonging to ...

  8. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    The number of non-absolute points (lines) incident with a non-absolute line (point) is even. Furthermore, [18] The polarity π has at least n + 1 absolute points and if n is not a square, exactly n + 1 absolute points. If π has exactly n + 1 absolute points then; if n is odd, the absolute points form an oval whose tangents are the absolute ...

  9. Real projective plane - Wikipedia

    en.wikipedia.org/wiki/Real_projective_plane

    The points with coordinates [x : y : 1] are the usual real plane, called the finite part of the projective plane, and points with coordinates [x : y : 0], called points at infinity or ideal points, constitute a line called the line at infinity. (The homogeneous coordinates [0 : 0 : 0] do not represent any point.)