Search results
Results From The WOW.Com Content Network
The distance between two objects that are not points is usually defined to be the smallest distance among pairs of points from the two objects. Formulas are known for computing distances between different types of objects, such as the distance from a point to a line.
Now the problem has become one of finding the nearest point on this plane to the origin, and its distance from the origin. The point on the plane in terms of the original coordinates can be found from this point using the above relationships between and , between and , and between and ; the distance in terms of the original coordinates is the ...
In this system, an arbitrary point O (the origin) is chosen on a given line. The coordinate of a point P is defined as the signed distance from O to P, where the signed distance is the distance taken as positive or negative depending on which side of the line P lies. Each point is given a unique coordinate and each real number is the coordinate ...
Each point corresponds to its signed distance from the origin (a number with an absolute value equal to the distance and a + or − sign chosen based on direction). A geometric transformation of the line can be represented by a function of a real variable , for example translation of the line corresponds to addition, and scaling the line ...
The distance travelled by an object is the length of a specific path travelled between two points, [6] such as the distance walked while navigating a maze. This can even be a closed distance along a closed curve which starts and ends at the same point, such as a ball thrown straight up, or the Earth when it completes one orbit .
The origin of a Cartesian coordinate system. In mathematics, the origin of a Euclidean space is a special point, usually denoted by the letter O, used as a fixed point of reference for the geometry of the surrounding space. In physical problems, the choice of origin is often arbitrary, meaning any choice of origin will ultimately give the same ...
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and