Ad
related to: borel cantelli lemma test kit 2 in 1 digital tanpura tabla
Search results
Results From The WOW.Com Content Network
It is named after Émile Borel and Francesco Paolo Cantelli, who gave statement to the lemma in the first decades of the 20th century. [1] [2] A related result, sometimes called the second Borel–Cantelli lemma, is a partial converse of the first Borel–Cantelli lemma. The lemma states that, under certain conditions, an event will have ...
Burnside's lemma also known as the Cauchy–Frobenius lemma; Frattini's lemma (finite groups) Goursat's lemma; Mautner's lemma (representation theory) Ping-pong lemma (geometric group theory) Schreier's subgroup lemma; Schur's lemma (representation theory) Zassenhaus lemma
Proofs of Borel's lemma can be found in many text books on analysis, including Golubitsky & Guillemin (1974) and Hörmander (1990), from which the proof below is taken. Note that it suffices to prove the result for a small interval I = (− ε , ε ), since if ψ ( t ) is a smooth bump function with compact support in (− ε , ε ) equal ...
Borel–Cantelli lemma; C. Covering lemma; Covering problem of Rado; H. Hewitt–Savage zero–one law; K. ... This page was last edited on 1 January 2018, at 13:47 ...
Traditionally drone is often provided by one or more tanpura player(s), especially for vocal performances. The electronic tanpura was created as a marketable, practical solution for instrumentalists, having their hands otherwise engaged, who cannot readily avail themselves of able tanpura players for their long hours of private practice.
Borel–Cantelli lemma; ... Scheffé's lemma; Schröder–Bernstein theorem for measurable spaces; ... This page was last edited on 1 April 2013, ...
Given a Borel measure μ on a metric space X such that μ(X) > 0 and μ(B(x, r)) ≤ r s holds for some constant s > 0 and for every ball B(x, r) in X, then the Hausdorff dimension dim Haus (X) ≥ s. A partial converse is provided by the Frostman lemma: [7] Lemma: Let A be a Borel subset of R n, and let s > 0. Then the following are equivalent:
A main area of study in invariant descriptive set theory is the relative complexity of equivalence relations. An equivalence relation on a set is considered more complex than an equivalence relation on a set if one can "compute using " - formally, if there is a function : which is well behaved in some sense (for example, one often requires that is Borel measurable) such that ,: ().