Search results
Results From The WOW.Com Content Network
The minimum such speed is the stall speed, or V SO. The indicated airspeed at which a fixed-wing aircraft stalls varies with the weight of the aircraft but does not vary significantly with altitude. At speeds close to the stall speed the aircraft's wings are at a high angle of attack. At higher altitudes, the air density is lower than at sea level.
A load factor greater than 1 will cause the stall speed to increase by a factor equal to the square root of the load factor. For example, if the load factor is 2, the stall speed will increase by a ratio of 2 {\displaystyle {\sqrt {2}}} , or about 140%.
The drag-divergence Mach number (not to be confused with critical Mach number) is the Mach number at which the aerodynamic drag on an airfoil or airframe begins to increase rapidly as the Mach number continues to increase. [1] This increase can cause the drag coefficient to rise to more than ten times its low-speed value.
The subsonic speed range is that range of speeds within which, all of the airflow over an aircraft is less than Mach 1. The critical Mach number (Mcrit) is lowest free stream Mach number at which airflow over any part of the aircraft first reaches Mach 1. So the subsonic speed range includes all speeds that are less than Mcrit. Transonic: 0.8–1.2
V S: Stall speed: the speed at which the airplane exhibits those qualities accepted as defining the stall. [26]: 8 V S0: The stall speed or minimum steady flight speed in landing configuration. [27] The zero-thrust stall speed at the most extended landing flap setting. [26]: 8 V S1: The stall speed or minimum steady flight speed obtained in a ...
V S 1: Stall speed or minimum steady flight speed for which the aircraft is still controllable in a specific configuration. [7] [8] V S R: Reference stall speed. [7] V S R 0: Reference stall speed in landing configuration. [7] V S R 1: Reference stall speed in a specific configuration. [7] V SW: Speed at which the stall warning will occur. [7 ...
where a 0 is 1,225 km/h (661.45 kn) (the standard speed of sound at 15 °C), M is the Mach number, P is static pressure, and P 0 is standard sea level pressure (1013.25 hPa). Combining the above with the expression for Mach number gives EAS as a function of impact pressure and static pressure (valid for subsonic flow):
As noted earlier, , =,. The total drag coefficient can be estimated as: = [()], where is the propulsive efficiency, P is engine power in horsepower, sea-level air density in slugs/cubic foot, is the atmospheric density ratio for an altitude other than sea level, S is the aircraft's wing area in square feet, and V is the aircraft's speed in miles per hour.