When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Urn problem - Wikipedia

    en.wikipedia.org/wiki/Urn_problem

    In probability and statistics, an urn problem is an idealized mental exercise in which some objects of real interest (such as atoms, people, cars, etc.) are represented as colored balls in an urn or other container. One pretends to remove one or more balls from the urn; the goal is to determine the probability of drawing one color or another ...

  3. Parrondo's paradox - Wikipedia

    en.wikipedia.org/wiki/Parrondo's_paradox

    Here, if we leave some round marbles in the middle that move back and forth in a random fashion, they will roll around randomly but towards both ends with an equal probability. Now consider the second case where we have a saw-tooth-like profile between the two points. Here also, the marbles will roll towards either end depending on the local slope.

  4. Vandermonde's identity - Wikipedia

    en.wikipedia.org/wiki/Vandermonde's_identity

    The answer is (+). The answer is ... or through a simple double counting ... That is the probability distribution of the number of red marbles in r draws without ...

  5. This Probability Problem Seems So Simple—But Can You ... - AOL

    www.aol.com/probability-problem-seems-simple...

    For premium support please call: 800-290-4726 more ways to reach us

  6. Bertrand's box paradox - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_box_paradox

    Bertrand's box paradox: the three equally probable outcomes after the first gold coin draw. The probability of drawing another gold coin from the same box is 0 in (a), and 1 in (b) and (c). Thus, the overall probability of drawing a gold coin in the second draw is ⁠ 0 / 3 ⁠ + ⁠ 1 / 3 ⁠ + ⁠ 1 / 3 ⁠ = ⁠ 2 / 3 ⁠.

  7. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to ...

  8. Hypergeometric distribution - Wikipedia

    en.wikipedia.org/wiki/Hypergeometric_distribution

    In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.

  9. Exchangeable random variables - Wikipedia

    en.wikipedia.org/wiki/Exchangeable_random_variables

    Formally, an exchangeable sequence of random variables is a finite or infinite sequence X 1, X 2, X 3, ... of random variables such that for any finite permutation σ of the indices 1, 2, 3, ..., (the permutation acts on only finitely many indices, with the rest fixed), the joint probability distribution of the permuted sequence