Ad
related to: pet vectors map
Search results
Results From The WOW.Com Content Network
Many plant expression vectors are based on the Ti plasmid of Agrobacterium tumefaciens. [31] In these expression vectors, DNA to be inserted into plant is cloned into the T-DNA, a stretch of DNA flanked by a 25-bp direct repeat sequence at either end, and which can integrate into the plant genome. The T-DNA also contains the selectable marker.
Paired-end tags (PET) (sometimes "Paired-End diTags", or simply "ditags") are the short sequences at the 5’ and 3' ends of a DNA fragment which are unique enough that they (theoretically) exist together only once in a genome, therefore making the sequence of the DNA in between them available upon search (if full-genome sequence data is available) or upon further sequencing (since tag sites ...
An expression vector, most commonly the pET expression vector, is engineered to integrate two essential components: a T7 promoter and a gene of interest downstream of the promoter and under its control. The expression vector is transformed into one of several relevant strains of E. coli, most frequently BL21(DE3).
The tac promoter finds various applications. The tac promoter/operator (dubbed PTAC) is one of the most widely used expression systems.Ptac is a strong hybrid promoter composed of the –35 region of the trp promoter and the –10 region of the lacUV5 promoter/operator.
pBR322 is a plasmid and was one of the first widely used E. coli cloning vectors. Created in 1977 in the laboratory of Herbert Boyer at the University of California, San Francisco, it was named after Francisco Bolivar Zapata, the postdoctoral researcher and Raymond L. Rodriguez. The p stands for "plasmid," and BR for "Bolivar" and "Rodriguez."
In expression vectors, MCSs are positioned between a promoter and a terminator to regulate gene expression. The upstream promoter can be either constitutive or inducible, responding to specific chemical inducers, while the downstream terminator ensures proper transcriptional termination and enhances plasmid stability.
Positron emission tomography (PET) [1] is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption.
Vector map of pUC19. pUC19 is one of a series of plasmid cloning vectors designed by Joachim Messing and co-workers. [1] The designation "pUC" is derived from the classical "p" prefix (denoting "plasmid") and the abbreviation for the University of California, where early work on the plasmid series had been conducted. [2]