When.com Web Search

  1. Ads

    related to: right triangle circumscribing a circle equation solver calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    Hence, given the radius, r, center, P c, a point on the circle, P 0 and a unit normal of the plane containing the circle, ⁠ ^, ⁠ one parametric equation of the circle starting from the point P 0 and proceeding in a positively oriented (i.e., right-handed) sense about ⁠ ^ ⁠ is the following:

  3. Circumscribed circle - Wikipedia

    en.wikipedia.org/wiki/Circumscribed_circle

    Such a circle is said to circumscribe the points or a polygon formed from them; such a polygon is said to be inscribed in the circle. Circumcircle, the circumscribed circle of a triangle, which always exists for a given triangle. Cyclic polygon, a general polygon that can be circumscribed by a circle. The vertices of this polygon are concyclic ...

  4. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.

  5. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    Each hyperbolic triangle has an inscribed circle but not every hyperbolic triangle has a circumscribed circle (see below). Its vertices can lie on a horocycle or hypercycle. Hyperbolic triangles have some properties that are analogous to those of triangles in spherical or elliptic geometry: Two triangles with the same angle sum are equal in area.

  6. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    This proof consists of 'completing' the right triangle to form a rectangle and noticing that the center of that rectangle is equidistant from the vertices and so is the center of the circumscribing circle of the original triangle, it utilizes two facts: adjacent angles in a parallelogram are supplementary (add to 180°) and,

  7. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle. Three points in the plane that do not all fall on a straight line are concyclic, so every triangle is a cyclic polygon, with a well-defined ...

  8. Euler's theorem in geometry - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem_in_geometry

    In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).

  9. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    In every triangle a unique circle, called the incircle, can be inscribed such that it is tangent to each of the three sides of the triangle. [19] About every triangle a unique circle, called the circumcircle, can be circumscribed such that it goes through each of the triangle's three vertices. [20]