When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neutron scattering - Wikipedia

    en.wikipedia.org/wiki/Neutron_scattering

    Neutron scattering, the irregular dispersal of free neutrons by matter, can refer to either the naturally occurring physical process itself or to the man-made experimental techniques that use the natural process for investigating materials. The natural/physical phenomenon is of elemental importance in nuclear engineering and

  3. List of Feynman diagrams - Wikipedia

    en.wikipedia.org/wiki/List_of_Feynman_diagrams

    In the Stückelberg–Feynman interpretation, pair annihilation is the same process as pair production: Møller scattering: electron-electron scattering Bhabha scattering: electron-positron scattering Penguin diagram: a quark changes flavor via a W or Z loop Tadpole diagram: One loop diagram with one external leg Self-interaction or oyster diagram

  4. Neutron spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Neutron_spectroscopy

    This allows the total spin of the unpaired electrons and neutron to be probed. The magnetic scattering length from one electron is b m = 𝛾r 0 = 1.348 fm which is on the same order of magnitude as the nuclear scattering length. Because of the dipole-dipole character of the interaction, the scattering is considered to be anisotropic. [7]

  5. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    Feynman diagrams are graphs that represent the interaction of particles rather than the physical position of the particle during a scattering process. They are not the same as spacetime diagrams and bubble chamber images even though they all describe particle scattering. Unlike a bubble chamber picture, only the sum of all relevant Feynman ...

  6. Inverse beta decay - Wikipedia

    en.wikipedia.org/wiki/Inverse_beta_decay

    In nuclear and particle physics, inverse beta decay, commonly abbreviated to IBD, [1] is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron.

  7. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or particle, they then separate without changing the nature of any nuclide, the process is simply referred to as a type of nuclear scattering, rather than a nuclear reaction.

  8. Neutron diffraction - Wikipedia

    en.wikipedia.org/wiki/Neutron_diffraction

    Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material.

  9. Photodisintegration - Wikipedia

    en.wikipedia.org/wiki/Photodisintegration

    Photodisintegration (also called phototransmutation, or a photonuclear reaction) is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle.