Search results
Results From The WOW.Com Content Network
Comparison of phase diagrams of carbon dioxide (red) and water (blue) as a log-lin chart with phase transitions points at 1 atmosphere pressure. Dry ice is the solid form of carbon dioxide (CO 2), a molecule consisting of a single carbon atom bonded to two oxygen atoms.
Comparison of phase diagrams of carbon dioxide (red) and water (blue) showing the carbon dioxide sublimation point (middle-left) at 1 atmosphere. As dry ice is heated, it crosses this point along the bold horizontal line from the solid phase directly into the gaseous phase. Water, on the other hand, passes through a liquid phase at 1 atmosphere.
With radiation equilibrium temperatures of 40–50 K, [177] the objects in the Kuiper Belt are expected to have amorphous water ice. While water ice has been observed on several objects, [178] [179] the extreme faintness of these objects makes it difficult to determine the structure of the ices. The signatures of crystalline water ice was ...
Another type of binary phase diagram is a boiling-point diagram for a mixture of two components, i. e. chemical compounds. For two particular volatile components at a certain pressure such as atmospheric pressure, a boiling-point diagram shows what vapor (gas) compositions are in equilibrium with given liquid compositions depending on ...
At the phase transition point for a substance, for instance the boiling point, the two phases involved - liquid and vapor, have identical free energies and therefore are equally likely to exist. Below the boiling point, the liquid is the more stable state of the two, whereas above the boiling point the gaseous form is the more stable.
At high pressures, water has a complex phase diagram with 15 known phases of ice and several triple points, including 10 whose coordinates are shown in the diagram. For example, the triple point at 251 K (−22 °C) and 210 MPa (2070 atm) corresponds to the conditions for the coexistence of ice Ih (ordinary ice), ice III and liquid water, all ...
The various triple points of water Phases in stable equilibrium Pressure Temperature liquid water, ice I h, and water vapor 611.657 Pa [51] 273.16 K (0.01 °C) liquid water, ice I h, and ice III: 209.9 MPa 251 K (−22 °C) liquid water, ice III, and ice V: 350.1 MPa −17.0 °C liquid water, ice V, and ice VI: 632.4 MPa 0.16 °C
In the diagram for CO 2 the triple point is the point at which the solid, liquid and gas phases come together, at 5.2 bar and 217 K. It is also possible for other sets of phases to form a triple point, for example in the water system there is a triple point where ice I , ice III and liquid can coexist.