When.com Web Search

  1. Ads

    related to: how to calculate bend radius of pipe from wall unit

Search results

  1. Results From The WOW.Com Content Network
  2. Bend radius - Wikipedia

    en.wikipedia.org/wiki/Bend_radius

    Bend radius, which is measured to the inside curvature, is the minimum radius one can bend a pipe, tube, sheet, cable or hose without kinking it, damaging it, or shortening its life. The smaller the bend radius, the greater the material flexibility (as the radius of curvature decreases , the curvature increases ).

  3. Radial stress - Wikipedia

    en.wikipedia.org/wiki/Radial_stress

    For cylindrical pressure vessels, the normal loads on a wall element are longitudinal stress, circumferential (hoop) stress and radial stress. The radial stress for a thick-walled cylinder is equal and opposite to the gauge pressure on the inside surface, and zero on the outside surface. The circumferential stress and longitudinal stresses are ...

  4. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    r = radius of the pipe (for a pipe of circular section, the internal radius of the pipe). v = mean velocity of fluid flowing through the pipe. A = cross sectional area of the pipe. In long pipes, the loss in pressure (assuming the pipe is level) is proportional to the length of pipe involved.

  5. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:

  6. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  7. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height ε: the flow velocity in the neighborhood of the pipe wall is zero.

  8. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.

  9. Dean number - Wikipedia

    en.wikipedia.org/wiki/Dean_number

    The Dean number (De) is a dimensionless group in fluid mechanics, which occurs in the study of flow in curved pipes and channels.It is named after the British scientist W. R. Dean, who was the first to provide a theoretical solution of the fluid motion through curved pipes for laminar flow by using a perturbation procedure from a Poiseuille flow in a straight pipe to a flow in a pipe with very ...