When.com Web Search

  1. Ads

    related to: maximum and minimum of a domain function worksheet printable free 1st grade

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum , [ b ] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function.

  3. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions

  4. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  5. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    A continuous function () on the closed interval [,] showing the absolute max (red) and the absolute min (blue).. In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed and bounded interval [,], then must attain a maximum and a minimum, each at least once.

  6. Domain of a function - Wikipedia

    en.wikipedia.org/wiki/Domain_of_a_function

    It is sometimes denoted by ⁡ or ⁡, where f is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be". [1] More precisely, given a function :, the domain of f is X. In modern mathematical language, the domain is part of the definition of a function rather than a property of it.

  7. Bauer maximum principle - Wikipedia

    en.wikipedia.org/wiki/Bauer_maximum_principle

    Bauer's maximum principle is the following theorem in mathematical optimization: Any function that is convex and continuous , and defined on a set that is convex and compact , attains its maximum at some extreme point of that set.