Ad
related to: support vector machine book pdf file
Search results
Results From The WOW.Com Content Network
The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [ 1 ]
Regularization perspectives on support-vector machines interpret SVM as a special case of Tikhonov regularization, specifically Tikhonov regularization with the hinge loss for a loss function. This provides a theoretical framework with which to analyze SVM algorithms and compare them to other algorithms with the same goals: to generalize ...
Particularly, his work has focused on statistical analysis of learning algorithms, to its application to support vector machines, kernel methods and other algorithms. Cristianini is the co-author of two widely known books in machine learning, An Introduction to Support Vector Machines and Kernel Methods for Pattern Analysis and a book in ...
Upload file; Special pages; Permanent link; Page information; Get shortened URL; Download QR code; Print/export Download as PDF; ... on support vector machines; S.
The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification , multiclass classification and regression , the structured SVM allows training of a classifier for general structured output labels .
Vladimir Naumovich Vapnik (Russian: Владимир Наумович Вапник; born 6 December 1936) is a computer scientist, researcher, and academic.He is one of the main developers of the Vapnik–Chervonenkis theory of statistical learning [1] and the co-inventor of the support-vector machine method and support-vector clustering algorithms.