Ad
related to: understanding electricity volts amps watts
Search results
Results From The WOW.Com Content Network
For a simple electrical circuit running on direct current, the electrical current and voltage are constant.In that case, the real power (P, measured in watts) is the product of the current (I, measured in amperes) and the voltage from one side of the circuit to the other (V, measured in volts):
High-speed train overhead power lines: 25 kV at 50 Hz, but see the List of railway electrification systems and 25 kV at 60 Hz for exceptions. High-voltage electric power transmission lines: 110 kV and up (1.15 MV is the record; the highest active voltage is 1.10 MV [9]) Lightning: a maximum of around 150 MV. [10]
In terms of electromagnetism, one watt is the rate at which electrical work is performed when a current of one ampere (A) flows across an electrical potential difference of one volt (V), meaning the watt is equivalent to the volt-ampere (the latter unit, however, is used for a different quantity from the real power of an electrical circuit).
Voltage, also known as (electrical) potential difference, electric pressure, or electric tension is the difference in electric potential between two points. [ 1 ] [ 2 ] In a static electric field , it corresponds to the work needed per unit of charge to move a positive test charge from the first point to the second point.
Since power is defined as the product of current and voltage, the ampere can alternatively be expressed in terms of the other units using the relationship I = P/V, and thus 1 A = 1 W/V. Current can be measured by a multimeter, a device that can measure electrical voltage, current, and resistance.
When a metal wire is subjected to electric force applied on its opposite ends, these free electrons rush in the direction of the force, thus forming what we call an electric current." When a metal wire is connected across the two terminals of a DC voltage source such as a battery , the source places an electric field across the conductor.
A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step-up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step-down transformer, C=consumers.
Similarly, the rate of flow of electrical charge, that is, the electric current, through an electrical resistor is proportional to the difference in voltage measured across the resistor. More generally, the hydraulic head may be taken as the analog of voltage, and Ohm's law is then analogous to Darcy's law which relates hydraulic head to the ...