Ad
related to: where do phages come from biology quizlet answersstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Structural model at atomic resolution of bacteriophage T4 [1] The structure of a typical myovirus bacteriophage Anatomy and infection cycle of bacteriophage T4.. A bacteriophage (/ b æ k ˈ t ɪər i oʊ f eɪ dʒ /), also known informally as a phage (/ ˈ f eɪ dʒ /), is a virus that infects and replicates within bacteria and archaea.
Phage typing is a phenotypic method that uses bacteriophages ("phages" for short) for detecting and identifying single strains of bacteria. [1] Phages are viruses that infect bacteria and may lead to bacterial cell lysis. [2] The bacterial strain is assigned a type based on its lysis pattern. [3]
During an infection, chemical signals attract phagocytes to places where the pathogen has invaded the body. These chemicals may come from bacteria or from other phagocytes already present. The phagocytes move by a method called chemotaxis. When phagocytes come into contact with bacteria, the receptors on the phagocyte's surface will bind to them.
Integration of prophages into the bacterial host is the characteristic step of the lysogenic cycle of temperate phages. Prophages remain latent in the genome through multiple cell divisions until activation by an external factor, such as UV light, leading to production of new phage particles that will lyse the cell and spread.
Phages fd, f1, M13 and other related phages are Ff phages, for F specific (they infect Escherichia coli carrying the F-episome) filamentous phages, using the concept of vernacular name. [45] Filamentous bacteriophage engineered to display immunogenic peptides are useful in immunology and wider biological applications.
Temperate phages (such as lambda phage) can reproduce using both the lytic and the lysogenic cycle. [4] How a phage decides which cycle to enter depends on a variety of factors. [5] For instance, if there are several other infecting phages (or if there is a high multiplicity), it is likely that the phage will use the lysogenic cycle.
In a 1945 study by Demerec and Fano, [4] T7 was used to describe one of the seven phage types (T1 to T7) that grow lytically on Escherichia coli. [5] Although all seven phages were numbered arbitrarily, phages with odd numbers, or T-odd phages, were later discovered to share morphological and biochemical features that distinguish them from T-even phages. [6]
Dating back to the 1940s and continuing today, T-even phages are considered the best studied model organisms. Model organisms are usually required to be simple with as few as five genes. Yet, T-even phages are in fact among the largest and highest complexity virus, in which these phage's genetic information is made up of around 300 genes.