Search results
Results From The WOW.Com Content Network
Statistical risk is a quantification of a situation's risk using statistical methods.These methods can be used to estimate a probability distribution for the outcome of a specific variable, or at least one or more key parameters of that distribution, and from that estimated distribution a risk function can be used to obtain a single non-negative number representing a particular conception of ...
An example is shown on the left. The parameter space has just two elements and each point on the graph corresponds to the risk of a decision rule: the x-coordinate is the risk when the parameter is and the y-coordinate is the risk when the parameter is . In this decision problem, the minimax estimator lies on a line segment connecting two ...
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution). The MSE is a measure of the quality of an estimator.
Because the (natural log of the) odds of a record is estimated as a linear function of the explanatory variables, the estimated odds ratio for 70-year-olds and 60-year-olds associated with the type of treatment would be the same in logistic regression models where the outcome is associated with drug and age, although the relative risk might be ...
Empirical risk minimization for a classification problem with a 0-1 loss function is known to be an NP-hard problem even for a relatively simple class of functions such as linear classifiers. [5] Nevertheless, it can be solved efficiently when the minimal empirical risk is zero, i.e., data is linearly separable. [citation needed]
A decision rule is a function:, where upon observing , we choose to take action (). Also define a loss function L : Θ × A → R {\displaystyle L:\Theta \times {\mathcal {A}}\rightarrow \mathbb {R} } , which specifies the loss we would incur by taking action a ∈ A {\displaystyle a\in {\mathcal {A}}} when the true state of nature is θ ∈ Θ ...
The Bayes risk of ^ is defined as ((, ^)), where the expectation is taken over the probability distribution of : this defines the risk function as a function of ^. An estimator θ ^ {\displaystyle {\widehat {\theta }}} is said to be a Bayes estimator if it minimizes the Bayes risk among all estimators.