Search results
Results From The WOW.Com Content Network
If one looks at red numbers on the chart specifying grade, one can see the quirkiness of using the grade to specify slope; the numbers go from 0 for flat, to 100% at 45 degrees, to infinity as it approaches vertical. Slope may still be expressed when the horizontal run is not known: the rise can be divided by the hypotenuse (the
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
dh = elevation difference, dx = distance, S = slope, θ = angle of slope (inclination). The velocity on the flat terrain is 5 km / h, the maximum speed of 6 km / h is achieved roughly at -2.86°. [5] On flat terrain this formula works out to 5 km/h. For off-path travel, this value should be multiplied by 3/5, for horseback by 5/4. [1]
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
Stream gradient (or stream slope) is the grade (or slope) of a stream. It is measured by the ratio of drop in elevation and horizontal distance. [ 1 ] It is a dimensionless quantity , usually expressed in units of meters per kilometer (m/km) or feet per mile (ft/mi); it may also be expressed in percent (%).
For the United States, with a standard maximum unbalanced superelevation of 75 mm (3 in), the formula is this: v m a x = E a + 3 0.00066 d {\displaystyle v_{max}={\sqrt {\frac {E_{a}+3}{0.00066d}}}} where E a {\displaystyle E_{a}} is the superelevation in inches, d {\displaystyle d} is the curvature of the track in degrees per 100 feet, and v m ...
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...