Search results
Results From The WOW.Com Content Network
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
LDPC codes have no limitations of minimum distance, [34] that indirectly means that LDPC codes may be more efficient on relatively large code rates (e.g. 3/4, 5/6, 7/8) than turbo codes. However, LDPC codes are not the complete replacement: turbo codes are the best solution at the lower code rates (e.g. 1/6, 1/3, 1/2). [35] [36]
The description above is given for what is now called a serially concatenated code. Turbo codes, as described first in 1993, implemented a parallel concatenation of two convolutional codes, with an interleaver between the two codes and an iterative decoder that passes information forth and back between the codes. [6]
Proof. We need to prove that if you add a burst of length to a codeword (i.e. to a polynomial that is divisible by ()), then the result is not going to be a codeword (i.e. the corresponding polynomial is not divisible by ()).
Serial concatenated convolutional codes; Shaping codes; Slepian–Wolf coding; Snake-in-the-box; Soft-decision decoder; Soft-in soft-out decoder; Sparse graph code; Srivastava code; Stop-and-wait ARQ; Summation check
A code has all-symbol locality and availability if every code symbol can be recovered from disjoint repair sets of other symbols, each set of size at most symbols. Such codes are called ( r , t ) a {\displaystyle (r,t)_{a}} -LRC.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file