Search results
Results From The WOW.Com Content Network
Shortest job next being executed. Shortest job next (SJN), also known as shortest job first (SJF) or shortest process next (SPN), is a scheduling policy that selects for execution the waiting process with the smallest execution time. [1] SJN is a non-preemptive algorithm. Shortest remaining time is a preemptive variant of SJN.
Shortest remaining time being executed. Shortest remaining time, also known as shortest remaining time first (SRTF), is a scheduling method that is a preemptive version of shortest job next scheduling. In this scheduling algorithm, the process with the smallest amount of time remaining until completion is selected to execute. Since the ...
Highest response ratio next (HRRN) scheduling is a non-preemptive discipline. It was developed by Brinch Hansen as modification of shortest job next or shortest job first (SJN or SJF) to mitigate the problem of process starvation. In HRRN, the next job is not that with the shortest estimated run time, but that with the highest response ratio ...
All jobs are equally prioritised. Johnson's rule is as follows: List the jobs and their times at each work center. Select the job with the shortest activity time. If that activity time is for the first work center, then schedule the job first. If that activity time is for the second work center then schedule the job last. Break ties arbitrarily.
The scheduler is an operating system module that selects the next jobs to be admitted into the system and the next process to run. Operating systems may feature up to three distinct scheduler types: a long-term scheduler (also known as an admission scheduler or high-level scheduler), a mid-term or medium-term scheduler, and a short-term scheduler.
This is a sub-category of Category:Scheduling algorithms, focusing on heuristic algorithms for scheduling tasks (jobs) to processors (machines). For optimization problems related to scheduling, see Category:Optimal scheduling.
Least slack time (LST) scheduling is an algorithm for dynamic priority scheduling. It assigns priorities to processes based on their slack time. Slack time is the amount of time left after a job if the job was started now. This algorithm is also known as least laxity first.
In computer science, rate-monotonic scheduling (RMS) [1] is a priority assignment algorithm used in real-time operating systems (RTOS) with a static-priority scheduling class. [2] The static priorities are assigned according to the cycle duration of the job, so a shorter cycle duration results in a higher job priority.