Search results
Results From The WOW.Com Content Network
A six-pointed star, like a regular hexagon, can be created using a compass and a straight edge: . Make a circle of any size with the compass. Without changing the radius of the compass, set its pivot on the circle's circumference, and find one of the two points where a new circle would intersect the first circle.
The unicursal hexagram is a hexagram or six-pointed star that can be traced or drawn unicursally, in one continuous line rather than by two overlaid triangles. The hexagram can also be depicted inside a circle with the points touching it.
[6]: p.153 Figure 3. A nine-point circle bisects a line segment going from the corresponding triangle's orthocenter to any point on its circumcircle. Figure 4. The center N of the nine-point circle bisects a segment from the orthocenter H to the circumcenter O (making the orthocenter a center of dilation to both circles): [6]: p.152
A geometrical hexafoil. The hexafoil is a design with six-fold dihedral symmetry composed from six vesica piscis lenses arranged radially around a central point, often shown enclosed in a circumference of another six lenses.
There exist 5-point, 4-point and 3-point degenerate cases of Pascal's theorem. In a degenerate case, two previously connected points of the figure will formally coincide and the connecting line becomes the tangent at the coalesced point. See the degenerate cases given in the added scheme and the external link on circle geometries.
Code point Notes asterisk operator ∗: U+2217: May be used for the telephone star key: Star of David: : U+2721 six-pointed black star U+2736 Slavonic asterisk ꙳ U+A673 six-pointed star with middle dot/hexagram: 🔯: U+1F52F Vai full stop ꘎ U+A60E full width asterisk * U+FF0A Six spoke asterisk, various weights ...
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
A regular hexagon has Schläfli symbol {6} [2] and can also be constructed as a truncated equilateral triangle, t{3}, which alternates two types of edges. A regular hexagon is defined as a hexagon that is both equilateral and equiangular. It is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an ...