Search results
Results From The WOW.Com Content Network
Furthermore, if the Jacobian determinant at p is positive, then f preserves orientation near p; if it is negative, f reverses orientation. The absolute value of the Jacobian determinant at p gives us the factor by which the function f expands or shrinks volumes near p ; this is why it occurs in the general substitution rule .
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
In mathematics, the Jacobian conjecture is a famous unsolved problem concerning polynomials in several variables. It states that if a polynomial function from an n -dimensional space to itself has Jacobian determinant which is a non-zero constant, then the function has a polynomial inverse.
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
If the Jacobian of the dynamical system at an equilibrium happens to be a stability matrix (i.e., if the real part of each eigenvalue is strictly negative), then the equilibrium is asymptotically stable.
The above rules stating that extrema are characterized (among critical points with a non-singular Hessian) by a positive-definite or negative-definite Hessian cannot apply here since a bordered Hessian can neither be negative-definite nor positive-definite, as = if is any vector whose sole non-zero entry is its first.
If it is true, the Jacobian conjecture would be a variant of the inverse function theorem for polynomials. It states that if a vector-valued polynomial function has a Jacobian determinant that is an invertible polynomial (that is a nonzero constant), then it has an inverse that is also a polynomial function. It is unknown whether this is true ...
Let be the vector space spanned by the eigenvectors of which correspond to a negative eigenvalue and analogously for the positive eigenvalues. If a ∈ W s {\displaystyle a\in W^{s}} then lim t → ∞ x ( t ) = 0 {\displaystyle {\mbox{lim}}_{t\rightarrow \infty }x(t)=0} ; that is, the equilibrium point 0 is attractive to x ( t ) {\displaystyle ...