Search results
Results From The WOW.Com Content Network
The structure of dichlorine monoxide is similar to that of water and hypochlorous acid, with the molecule adopting a bent molecular geometry (due to the lone pairs on the oxygen atom) and resulting in C 2V molecular symmetry. The bond angle is slightly larger than normal, likely due to steric repulsion between the bulky chlorine atoms.
Chlorine monoxide is a chemical radical with the chemical formula ClO •. It plays an important role in the process of ozone depletion. In the stratosphere, chlorine atoms react with ozone molecules to form chlorine monoxide and oxygen. Cl • + O 3 → ClO • + O 2. This reaction causes the depletion of the ozone layer. [1]
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
For a diatomic molecule, an MO diagram effectively shows the energetics of the bond between the two atoms, whose AO unbonded energies are shown on the sides. For simple polyatomic molecules with a "central atom" such as methane (CH 4) or carbon dioxide (CO 2), a MO diagram may show one of the identical bonds to the central atom. For other ...
Stereochemistry demands special attention because three-dimensionality is the most difficult part of a structure to visualize. Techniques for presenting 3-dimensional structures reflect the tastes of the artist. Three dimensionality is best highlighted by the depictions of bonds, using wedges, bolding, and hashed formats.
Molecular models may be created for several reasons – as pedagogic tools for students or those unfamiliar with atomistic structures; as objects to generate or test theories (e.g., the structure of DNA); as analogue computers (e.g., for measuring distances and angles in flexible systems); or as aesthetically pleasing objects on the boundary of ...
A chemical graph is a labeled graph whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds. Its vertices are labeled with the kinds of the corresponding atoms and edges are labeled with the types of bonds. [1] For particular purposes any of the labelings may be ignored.
In chemistry, bond order is a formal measure of the multiplicity of a covalent bond between two atoms. As introduced by Gerhard Herzberg, [1] building off of work by R. S. Mulliken and Friedrich Hund, bond order is defined as the difference between the numbers of electron pairs in bonding and antibonding molecular orbitals.