Search results
Results From The WOW.Com Content Network
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.
This was a major unsolved problem in the Calculus of Variations, until Šverák gave an counterexample in 1993 for the case and . [11] The case d = 2 {\displaystyle d=2} or m = 2 {\displaystyle m=2} is still an open problem, known as Morrey's conjecture.
The solution to the brachistochrone problem is the cycloid. An example of an application of the Beltrami identity is the brachistochrone problem , which involves finding the curve y = y ( x ) {\displaystyle y=y(x)} that minimizes the integral
In mathematics, Plateau's problem is to show the existence of a minimal surface with a given boundary, a problem raised by Joseph-Louis Lagrange in 1760. However, it is named after Joseph Plateau who experimented with soap films. The problem is considered part of the calculus of variations.
This is a list of variational topics in from mathematics and physics.See calculus of variations for a general introduction.. Action (physics) Averaged Lagrangian; Brachistochrone curve
In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. Accordingly, the necessary condition of extremum ( functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf .
Elementary Calculus: An Infinitesimal Approach; Nonstandard calculus; Infinitesimal; Archimedes' use of infinitesimals; For further developments: see list of real analysis topics, list of complex analysis topics, list of multivariable calculus topics
For example, the problem of determining the shape of a hanging chain suspended at both ends—a catenary—can be solved using variational calculus, and in this case, the variational principle is the following: The solution is a function that minimizes the gravitational potential energy of the chain.