When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Formal charge - Wikipedia

    en.wikipedia.org/wiki/Formal_charge

    The formal charge of any atom in a molecule can be calculated by the following equation: = where V is the number of valence electrons of the neutral atom in isolation (in its ground state); L is the number of non-bonding valence electrons assigned to this atom in the Lewis structure of the molecule; and B is the total number of electrons shared ...

  3. Charge number - Wikipedia

    en.wikipedia.org/wiki/Charge_number

    Charge number (denoted z) is a quantized and dimensionless quantity derived from electric charge, with the quantum of electric charge being the elementary charge (e, constant). The charge number equals the electric charge ( q , in coulombs ) divided by the elementary charge: z = q / e .

  4. Partial charge - Wikipedia

    en.wikipedia.org/wiki/Partial_charge

    In atomic physics, a partial charge (or net atomic charge) is a non-integer charge value when measured in elementary charge units. It is represented by the Greek lowercase delta (𝛿), namely 𝛿− or 𝛿+. Partial charges are created due to the asymmetric distribution of electrons in chemical bonds.

  5. Mulliken population analysis - Wikipedia

    en.wikipedia.org/wiki/Mulliken_population_analysis

    The Mulliken population assigns an electronic charge to a given atom A, known as the gross atom population: as the sum of over all orbitals belonging to atom A. The charge, , is then defined as the difference between the number of electrons on the isolated free atom, which is the atomic number , and the gross atom population:

  6. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.

  7. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not ⁠ 1 / 2 ⁠ e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)

  8. Electrochemical equivalent - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_equivalent

    In chemistry, the electrochemical equivalent (Eq or Z) of a chemical element is the mass of that element (in grams) transported by a specific quantity of electricity, usually expressed in grams per coulomb of electric charge. [1] The electrochemical equivalent of an element is measured with a voltameter.

  9. Orders of magnitude (charge) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(charge)

    (2/3 e)—Charge of up, charm and top quarks [2] 1.602 × 10 −19 C: The elementary charge e, i.e. the negative charge on a single electron or the positive charge on a single proton [3] 10 −18: atto-(aC) ~ 1.8755 × 10 −18 C: Planck charge [4] [5] 10 −17: 1.473 × 10 −17 C (92 e) – Positive charge on a uranium nucleus (derived: 92 x ...