Search results
Results From The WOW.Com Content Network
It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...
An everywhere differentiable function g : R → R is Lipschitz continuous (with K = sup |g′(x)|) if and only if it has a bounded first derivative; one direction follows from the mean value theorem. In particular, any continuously differentiable function is locally Lipschitz, as continuous functions are locally bounded so its gradient is ...
is everywhere continuous. However, it is not differentiable at = (but is so everywhere else). Weierstrass's function is also everywhere continuous but nowhere differentiable. The derivative f′(x) of a differentiable function f(x) need not be continuous. If f′(x) is continuous, f(x) is said to be continuously differentiable.
In mathematical analysis, Rademacher's theorem, named after Hans Rademacher, states the following: If U is an open subset of R n and f: U → R m is Lipschitz continuous, then f is differentiable almost everywhere in U; that is, the points in U at which f is not differentiable form a set of Lebesgue measure zero. Differentiability here refers ...
This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated ...
Any continuous function on the interval [,] is also uniformly continuous, since [,] is a compact set. If a function is differentiable on an open interval and its derivative is bounded, then the function is uniformly continuous on that interval.
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
If is -differentiable on , then it is at least in the class since ′, ″, …, are continuous on . The function f {\displaystyle f} is said to be infinitely differentiable , smooth , or of class C ∞ , {\displaystyle C^{\infty },} if it has derivatives of all orders on U . {\displaystyle U.}