Search results
Results From The WOW.Com Content Network
The perpendicular bisector construction can be reversed via isogonal conjugation. [3] That is, ... J. Langr, Problem E1050, Amer. Math. Monthly, 60 (1953) 551.
To construct the perpendicular bisector of the line segment between two points requires two circles, each centered on an endpoint and passing through the other endpoint (operation 2). The intersection points of these two circles (operation 4) are equidistant from the endpoints. The line through them (operation 1) is the perpendicular bisector.
Sixteen key points of a triangle are its vertices, the midpoints of its sides, the feet of its altitudes, the feet of its internal angle bisectors, and its circumcenter, centroid, orthocenter, and incenter. These can be taken three at a time to yield 139 distinct nontrivial problems of constructing a triangle from three points. [12]
The interior perpendicular bisector of a side of a triangle is the segment, falling entirely on and inside the triangle, of the line that perpendicularly bisects that side. The three perpendicular bisectors of a triangle's three sides intersect at the circumcenter (the center of the circle through the three vertices). Thus any line through a ...
The perpendicular bisectors of any two sides of a triangle intersect in exactly one point. This point must be equidistant from the vertices of the triangle. One way of formulating Thales's theorem is: if the center of a triangle's circumcircle lies on the triangle then the triangle is right, and the center of its circumcircle lies on its ...
Perpendicular bisector construction of a quadrilateral, on the use of perpendicular bisectors of a quadrilateral's sides to form another quadrilateral Topics referred to by the same term This disambiguation page lists articles associated with the title Perpendicular bisector construction .
The set of points equidistant from two points is a perpendicular bisector to the line segment connecting the two points. [8] The set of points equidistant from two intersecting lines is the union of their two angle bisectors. All conic sections are loci: [9] Circle: the set of points at constant distance (the radius) from a fixed point (the ...
One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry. It divides the quadrilateral into two congruent triangles that are mirror images of each other. [7]