Search results
Results From The WOW.Com Content Network
The "trick" that allows lossless compression algorithms, used on the type of data they were designed for, to consistently compress such files to a shorter form is that the files the algorithms are designed to act on all have some form of easily modeled redundancy that the algorithm is designed to remove, and thus belong to the subset of files ...
The most widely used lossy compression algorithm is the discrete cosine transform (DCT), first published by Nasir Ahmed, T. Natarajan and K. R. Rao in 1974. Lossy compression is most commonly used to compress multimedia data (audio, video, and images), especially in applications such as streaming media and internet telephony. By contrast ...
Download as PDF; Printable version; In other projects Wikimedia Commons; ... Pages in category "Lossless compression algorithms" The following 78 pages are in this ...
In both lossy and lossless compression, information redundancy is reduced, using methods such as coding, quantization, DCT and linear prediction to reduce the amount of information used to represent the uncompressed data. Lossy audio compression algorithms provide higher compression and are used in numerous audio applications including Vorbis ...
Lempel–Ziv–Welch (LZW) is a universal lossless data compression algorithm created by Abraham Lempel, Jacob Ziv, and Terry Welch.It was published by Welch in 1984 as an improved implementation of the LZ78 algorithm published by Lempel and Ziv in 1978.
Download as PDF; Printable version; ... Pages in category "Lossy compression algorithms" ... Lossy compression; Lyra (codec) M.
LZ77 and LZ78 are the two lossless data compression algorithms published in papers by Abraham Lempel and Jacob Ziv in 1977 [1] and 1978. [2] They are also known as Lempel-Ziv 1 (LZ1) and Lempel-Ziv 2 (LZ2) respectively. [3] These two algorithms form the basis for many variations including LZW, LZSS, LZMA and others.
JBIG2 is an image compression standard for bi-level images, developed by the Joint Bi-level Image Experts Group.It is suitable for both lossless and lossy compression. . According to a press release [1] from the Group, in its lossless mode JBIG2 typically generates files 3–5 times smaller than Fax Group 4 and 2–4 times smaller than JBIG, the previous bi-level compression standard released by