Search results
Results From The WOW.Com Content Network
In this response, bacterial cells can secrete extracellular polymeric substances to form a film that can provide support to the bacterial colony, such as by improving their ability to adhere to a surface. [4] Another common stress response is latency. In a latent states, a cell will slow down its metabolism and become virtually dormant.
For this, they forced E. coli planktonic cells into a swarming-cell-phenotype by inhibiting cell division (leading to cell elongation) and by deletion of the chemosensory system (leading to smooth swimming cells that do not tumble). The increase of bacterial density inside the channel led to the formation of progressively larger rafts. Cells ...
The phenomenon, when taken to mean "hot water freezes faster than cold", is difficult to reproduce or confirm because it is ill-defined. [4] Monwhea Jeng proposed a more precise wording: "There exists a set of initial parameters, and a pair of temperatures, such that given two bodies of water identical in these parameters, and differing only in initial uniform temperatures, the hot one will ...
Generally, turgor pressure is caused by the osmotic flow of water and occurs in plants, fungi, and bacteria. The phenomenon is also observed in protists that have cell walls. [3] This system is not seen in animal cells, as the absence of a cell wall would cause the cell to lyse when under too much pressure. [4]
Bacterial gliding is a process of motility whereby a bacterium can move under its own power. Generally, the process occurs whereby the bacterium moves along a surface in the general direction of its long axis. [ 5 ]
Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.
Cold water does not boil faster. Water boils when it reaches its boiling point of 212 degrees Fahrenheit, 100 degrees Celsius or 373 degrees Kelvin. ... Cold water does not boil faster. Water ...
At least six major areas of cryobiology can be identified: 1) study of cold-adaptation of microorganisms, plants (cold hardiness), and animals, both invertebrates and vertebrates (including hibernation), 2) cryopreservation of cells, tissues, gametes, and embryos of animal and human origin for (medical) purposes of long-term storage by cooling to temperatures below the freezing point of water.