Search results
Results From The WOW.Com Content Network
A rectangular cuboid with integer edges, as well as integer face diagonals, is called an Euler brick; for example with sides 44, 117, and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists. [6] The number of different nets for a simple cube is 11 ...
An almost-perfect cuboid has 6 out of the 7 lengths as rational. Such cuboids can be sorted into three types, called body, edge, and face cuboids. [14] In the case of the body cuboid, the body (space) diagonal g is irrational. For the edge cuboid, one of the edges a, b, c is irrational. The face cuboid has one of the face diagonals d, e, f ...
A magic square is an arrangement of numbers in a square grid so that the sum of the numbers along every row, column, and diagonal is the same. Similarly, one may define a magic cube to be an arrangement of numbers in a cubical grid so that the sum of the numbers on the four space diagonals must be the same as the sum of the numbers in each row, each column, and each pillar.
Equivalently, an elementary cube is any translate of a unit cube [,] embedded in Euclidean space (for some , {} with ). [3] A set X ⊆ R d {\displaystyle X\subseteq \mathbf {R} ^{d}} is a cubical complex (or cubical set ) if it can be written as a union of elementary cubes (or possibly, is homeomorphic to such a set).
A four-dimensional orthotope is likely a hypercuboid. [7]The special case of an n-dimensional orthotope where all edges have equal length is the n-cube or hypercube. [2]By analogy, the term "hyperrectangle" can refer to Cartesian products of orthogonal intervals of other kinds, such as ranges of keys in database theory or ranges of integers, rather than real numbers.
In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.
The middle image is the uniform truncated cube; it is represented by a Schläfli symbol t{p,q,...}. A bitruncation is a deeper truncation, removing all the original edges, but leaving an interior part of the original faces. Example: a truncated octahedron is a bitruncated cube: t{3,4} = 2t{4,3}.
For aspect ratios closer to 1 (including aspect ratio 1 for the square of Prince Rupert's cube), two of the four vertices of an optimal rectangle are equidistant from a vertex of the cube, along two of the three edges touching that vertex. The other two rectangle vertices are the reflections of the first two across the center of the cube. [4]