When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    A rectangular cuboid with integer edges, as well as integer face diagonals, is called an Euler brick; for example with sides 44, 117, and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists. [6] The number of different nets for a simple cube is 11 ...

  3. Euler brick - Wikipedia

    en.wikipedia.org/wiki/Euler_brick

    An almost-perfect cuboid has 6 out of the 7 lengths as rational. Such cuboids can be sorted into three types, called body, edge, and face cuboids. [14] In the case of the body cuboid, the body (space) diagonal g is irrational. For the edge cuboid, one of the edges a, b, c is irrational. The face cuboid has one of the face diagonals d, e, f ...

  4. Nine dots puzzle - Wikipedia

    en.wikipedia.org/wiki/Nine_dots_puzzle

    To do so, one goes outside the confines of the square area defined by the nine dots themselves. The phrase thinking outside the box, used by management consultants in the 1970s and 1980s, is a restatement of the solution strategy. According to Daniel Kies, the puzzle seems hard because we commonly imagine a boundary around the edge of the dot ...

  5. Space diagonal - Wikipedia

    en.wikipedia.org/wiki/Space_diagonal

    A magic square is an arrangement of numbers in a square grid so that the sum of the numbers along every row, column, and diagonal is the same. Similarly, one may define a magic cube to be an arrangement of numbers in a cubical grid so that the sum of the numbers on the four space diagonals must be the same as the sum of the numbers in each row, each column, and each pillar.

  6. Hyperrectangle - Wikipedia

    en.wikipedia.org/wiki/Hyperrectangle

    A four-dimensional orthotope is likely a hypercuboid. [7]The special case of an n-dimensional orthotope where all edges have equal length is the n-cube or hypercube. [2]By analogy, the term "hyperrectangle" can refer to Cartesian products of orthogonal intervals of other kinds, such as ranges of keys in database theory or ranges of integers, rather than real numbers.

  7. Cuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Cuboctahedron

    A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square.

  8. Truncation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Truncation_(geometry)

    The middle image is the uniform truncated cube; it is represented by a Schläfli symbol t{p,q,...}. A bitruncation is a deeper truncation, removing all the original edges, but leaving an interior part of the original faces. Example: a truncated octahedron is a bitruncated cube: t{3,4} = 2t{4,3}.

  9. Prince Rupert's cube - Wikipedia

    en.wikipedia.org/wiki/Prince_Rupert's_cube

    For aspect ratios closer to 1 (including aspect ratio 1 for the square of Prince Rupert's cube), two of the four vertices of an optimal rectangle are equidistant from a vertex of the cube, along two of the three edges touching that vertex. The other two rectangle vertices are the reflections of the first two across the center of the cube. [4]