When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...

  3. Primitive abundant number - Wikipedia

    en.wikipedia.org/wiki/Primitive_abundant_number

    [1] [2] For example, 20 is a primitive abundant number because: The sum of its proper divisors is 1 + 2 + 4 + 5 + 10 = 22, so 20 is an abundant number. The sums of the proper divisors of 1, 2, 4, 5 and 10 are 0, 1, 3, 1 and 8 respectively, so each of these numbers is a deficient number. The first few primitive abundant numbers are:

  4. Primary pseudoperfect number - Wikipedia

    en.wikipedia.org/wiki/Primary_pseudoperfect_number

    Primary pseudoperfect numbers were first investigated and named by Butske, Jaje, and Mayernik (2000). Using computational search techniques, they proved the remarkable result that for each positive integer r up to 8, there exists exactly one primary pseudoperfect number with precisely r (distinct) prime factors, namely, the rth known primary pseudoperfect number.

  5. Practical number - Wikipedia

    en.wikipedia.org/wiki/Practical_number

    The only odd practical number is 1, because if is an odd number greater than 2, then 2 cannot be expressed as the sum of distinct divisors of . More strongly, Srinivasan (1948) observes that other than 1 and 2, every practical number is divisible by 4 or 6 (or both).

  6. Primitive part and content - Wikipedia

    en.wikipedia.org/wiki/Primitive_part_and_content

    A polynomial is primitive if its content equals 1. Thus the primitive part of a polynomial is a primitive polynomial. Gauss's lemma for polynomials states that the product of primitive polynomials (with coefficients in the same unique factorization domain) also is primitive. This implies that the content and the primitive part of the product of ...

  7. Full reptend prime - Wikipedia

    en.wikipedia.org/wiki/Full_reptend_prime

    The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime. That is, the multiplicative order ord p b = p − 1, which is equivalent to b being a primitive root modulo p. The term "long prime" was used by John Conway and Richard Guy in their Book of Numbers.

  8. Stern–Brocot tree - Wikipedia

    en.wikipedia.org/wiki/Stern–Brocot_tree

    The root of the Stern–Brocot tree corresponds to the number 1. The parent-child relation between numbers in the Stern–Brocot tree may be defined in terms of simple continued fractions or mediants, and a path in the tree from the root to any other number q provides a sequence of approximations to q with smaller denominators than q.

  9. Pythagorean prime - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_prime

    However, the number of Pythagorean primes up to is frequently somewhat smaller than the number of non-Pythagorean primes; this phenomenon is known as Chebyshev's bias. [1] For example, the only values of n {\displaystyle n} up to 600000 for which there are more Pythagorean than non-Pythagorean odd primes less than or equal to n are 26861 and 26862.