When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...

  3. Primitive abundant number - Wikipedia

    en.wikipedia.org/wiki/Primitive_abundant_number

    [1] [2] For example, 20 is a primitive abundant number because: The sum of its proper divisors is 1 + 2 + 4 + 5 + 10 = 22, so 20 is an abundant number. The sums of the proper divisors of 1, 2, 4, 5 and 10 are 0, 1, 3, 1 and 8 respectively, so each of these numbers is a deficient number. The first few primitive abundant numbers are:

  4. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    The number 3 is a primitive root modulo 7 [5] because = = = = = = = = = = = = (). Here we see that the period of 3 k modulo 7 is 6. The remainders in the period, which are 3, 2, 6, 4, 5, 1, form a rearrangement of all nonzero remainders modulo 7, implying that 3 is indeed a primitive root modulo 7.

  5. Practical number - Wikipedia

    en.wikipedia.org/wiki/Practical_number

    The only odd practical number is 1, because if is an odd number greater than 2, then 2 cannot be expressed as the sum of distinct divisors of . More strongly, Srinivasan (1948) observes that other than 1 and 2, every practical number is divisible by 4 or 6 (or both).

  6. Carmichael function - Wikipedia

    en.wikipedia.org/wiki/Carmichael_function

    The Carmichael lambda function of a prime power can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case λ of the product is the least common multiple of the λ of the prime power factors.

  7. Dirichlet character - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_character

    In analytic number theory and related branches of mathematics, a complex-valued arithmetic function: is a Dirichlet character of modulus (where is a positive integer) if for all integers and : [1] χ ( a b ) = χ ( a ) χ ( b ) ; {\displaystyle \chi (ab)=\chi (a)\chi (b);} that is, χ {\displaystyle \chi } is completely multiplicative .

  8. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.

  9. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    f has degree at most p − 2 (since the leading terms cancel), and modulo p also has the p − 1 roots 1, 2, ..., p − 1. But Lagrange's theorem says it cannot have more than p − 2 roots. Therefore, f must be identically zero (mod p), so its constant term is (p − 1)! + 1 ≡ 0 (mod p). This is Wilson's theorem.