When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pushdown automaton - Wikipedia

    en.wikipedia.org/wiki/Pushdown_automaton

    It can only choose a new state, the result of following the transition. A pushdown automaton (PDA) differs from a finite state machine in two ways: It can use the top of the stack to decide which transition to take. It can manipulate the stack as part of performing a transition. A pushdown automaton reads a given input string from left to right.

  3. Deterministic pushdown automaton - Wikipedia

    en.wikipedia.org/wiki/Deterministic_pushdown...

    The two are not equivalent for the deterministic pushdown automaton (although they are for the non-deterministic pushdown automaton). The languages accepted by empty stack are those languages that are accepted by final state and are prefix-free: no word in the language is the prefix of another word in the language. [2] [3]

  4. Embedded pushdown automaton - Wikipedia

    en.wikipedia.org/wiki/Embedded_pushdown_automaton

    An embedded pushdown automaton or EPDA is a computational model for parsing languages generated by tree-adjoining grammars (TAGs). It is similar to the context-free grammar-parsing pushdown automaton, but instead of using a plain stack to store symbols, it has a stack of iterated stacks that store symbols, giving TAGs a generative capacity between context-free and context-sensitive grammars ...

  5. Greibach normal form - Wikipedia

    en.wikipedia.org/wiki/Greibach_normal_form

    This conversion can be used to prove that every context-free language can be accepted by a real-time (non-deterministic) pushdown automaton, i.e., the automaton reads a letter from its input every step. Given a grammar in GNF and a derivable string in the grammar with length n, any top-down parser will halt at depth n.

  6. Deterministic context-free grammar - Wikipedia

    en.wikipedia.org/wiki/Deterministic_context-free...

    Deterministic context-free grammars were particularly useful because they could be parsed sequentially by a deterministic pushdown automaton, which was a requirement due to computer memory constraints. [4] In 1965, Donald Knuth invented the LR(k) parser and proved that there exists an LR(k) grammar for every deterministic context-free language. [5]

  7. Nested word - Wikipedia

    en.wikipedia.org/wiki/Nested_word

    Nested words over the alphabet = {,, …,} can be encoded into "ordinary" words over the tagged alphabet ^, in which each symbol a from Σ has three tagged counterparts: the symbol a for encoding a call position in a nested word labelled with a, the symbol a for encoding a return position labelled with a, and finally the symbol a itself for representing an internal position labelled with a.

  8. Two-way finite automaton - Wikipedia

    en.wikipedia.org/wiki/Two-way_finite_automaton

    A two-way deterministic finite automaton (2DFA) is an abstract machine, a generalized version of the deterministic finite automaton (DFA) which can revisit characters already processed. As in a DFA, there are a finite number of states with transitions between them based on the current character, but each transition is also labelled with a value ...

  9. LL parser - Wikipedia

    en.wikipedia.org/wiki/LL_parser

    The () parser is a deterministic pushdown automaton with the ability to peek on the next input symbols without reading. This peek capability can be emulated by storing the lookahead buffer contents in the finite state space, since both buffer and input alphabet are finite in size.