Ads
related to: lateral surface area definition geometry math examples
Search results
Results From The WOW.Com Content Network
Thus the lateral surface of a cube will be the area of four faces: 4a 2. More generally, the lateral surface area of a prism is the sum of the areas of the sides of the prism. [1] This lateral surface area can be calculated by multiplying the perimeter of the base by the height of the prism. [2]
The lateral surface of a right cylinder is the meeting of the generatrices. [3] It can be obtained by the product between the length of the circumference of the base and the height of the cylinder. Therefore, the lateral surface area is given by: =. [2] Where: represents the lateral surface area of the cylinder; is approximately 3.14;
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
The term cylinder can also mean the lateral surface of a solid cylinder (see cylinder (geometry)). If a cylinder is used in this sense, the above paragraph would read as follows: A plane section of a right circular cylinder of finite length [ 6 ] is a circle if the cutting plane is perpendicular to the cylinder's axis of symmetry, or an ellipse ...
In geometry, a surface S in 3-dimensional Euclidean space is ruled (also called a scroll) if through every point of S, there is a straight line that lies on S. Examples include the plane , the lateral surface of a cylinder or cone , a conical surface with elliptical directrix , the right conoid , the helicoid , and the tangent developable of a ...
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.
In geometry, a frustum (Latin for 'morsel'); [a] (pl.: frusta or frustums) is the portion of a solid (normally a pyramid or a cone) that lies between two parallel planes cutting the solid. In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal .
Graph of = /. Gabriel's horn is formed by taking the graph of =, with the domain and rotating it in three dimensions about the x axis. The discovery was made using Cavalieri's principle before the invention of calculus, but today, calculus can be used to calculate the volume and surface area of the horn between x = 1 and x = a, where a > 1. [6]