When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.

  3. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    It can be extended to infinite-dimensional vector spaces as the L 2 norm or L 2 distance. [25] The Euclidean distance gives Euclidean space the structure of a topological space, the Euclidean topology, with the open balls (subsets of points at less than a given distance from a given point) as its neighborhoods. [26]

  4. Falconer's conjecture - Wikipedia

    en.wikipedia.org/wiki/Falconer's_conjecture

    In geometric measure theory, Falconer's conjecture, named after Kenneth Falconer, is an unsolved problem concerning the sets of Euclidean distances between points in compact-dimensional spaces. Intuitively, it states that a set of points that is large in its Hausdorff dimension must determine a set of distances that is large in measure .

  5. Distance from a point to a plane - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    In Euclidean space, the distance from a point to a plane is the distance between a given point and its orthogonal projection on the plane, the perpendicular distance to the nearest point on the plane.

  6. Closest pair of points problem - Wikipedia

    en.wikipedia.org/wiki/Closest_pair_of_points_problem

    The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...

  7. Distance geometry - Wikipedia

    en.wikipedia.org/wiki/Distance_geometry

    Distance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. [1] [2] [3] More abstractly, it is the study of semimetric spaces and the isometric transformations between them.

  8. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.

  9. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.