Search results
Results From The WOW.Com Content Network
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a×b=a×c, then the multiplicative term a can be canceled out if a≠0, resulting in the equivalent expression b=c; this is equivalent to dividing through by a.
This is a common procedure in mathematics, used to reduce fractions or calculate a value for a given variable in a fraction. If we have an equation =, where x is a variable we are interested in solving for, we can use cross-multiplication to determine that =.
The article by Boas analyzes two-digit cases in bases other than base 10, e.g., 32 / 13 = 2 / 1 and its inverse are the only solutions in base 4 with two digits. [2]An example of anomalous cancellation with more than two digits is 165 / 462 = 15 / 42 , and an example with different numbers of digits is 98 / 392 = 8 / 32 .
The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
where the second term is a proper rational fraction. The sum of two proper rational fractions is a proper rational fraction as well. The reverse process of expressing a proper rational fraction as the sum of two or more fractions is called resolving it into partial fractions. For example,
The values of the variables may be taken in any field L containing K. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is L. The set of rational functions over a field K is a field, the field of fractions of the ring of the polynomial functions over K.
In this example a, b and c are coefficients of the polynomial. Since c occurs in a term that does not involve x, it is called the constant term of the polynomial and can be thought of as the coefficient of x 0. More generally, any polynomial term or expression of degree zero (no variable) is a constant. [5]: 18