When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    In non-excitable cells, and in excitable cells in their baseline states, the membrane potential is held at a relatively stable value, called the resting potential. For neurons, resting potential is defined as ranging from –80 to –70 millivolts; that is, the interior of a cell has a negative baseline voltage of a bit less than one-tenth of a ...

  3. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    However, the main excitable cell is the neuron, which also has the simplest mechanism for the action potential. [citation needed] Neurons are electrically excitable cells composed, in general, of one or more dendrites, a single soma, a single axon and one or more axon terminals. Dendrites are cellular projections whose primary function is to ...

  4. Graded potential - Wikipedia

    en.wikipedia.org/wiki/Graded_potential

    Graded potentials that make the membrane potential more negative, and make the postsynaptic cell less likely to have an action potential, are called inhibitory post synaptic potentials (IPSPs). Hyperpolarization of membranes is caused by influx of Cl − or efflux of K +. As with EPSPs, the amplitude of the IPSP is directly proportional to the ...

  5. Threshold potential - Wikipedia

    en.wikipedia.org/wiki/Threshold_potential

    The signals can only continue along the neuron to cause an action potential further down if they are strong enough to make it past the cell's membrane resistance and capacitance. For example, a neuron with a large diameter has more ionic channels in its membrane than a smaller cell, resulting in a lower resistance to the flow of ionic current.

  6. Voltage-gated ion channel - Wikipedia

    en.wikipedia.org/wiki/Voltage-gated_ion_channel

    Cell membranes are generally impermeable to ions, thus they must diffuse through the membrane through transmembrane protein channels. Voltage-gated ion channels have a crucial role in excitable cells such as neuronal and muscle tissues, allowing a rapid and co-ordinated depolarization in response to triggering voltage change.

  7. Resting potential - Wikipedia

    en.wikipedia.org/wiki/Resting_potential

    The Na + /K +-ATPase, as well as effects of diffusion of the involved ions, are major mechanisms to maintain the resting potential across the membranes of animal cells.. The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as opposed to the specific dynamic electrochemical phenomena called action potential and graded ...

  8. Polarized membrane - Wikipedia

    en.wikipedia.org/wiki/Polarized_membrane

    Plasma membranes exhibit electrochemical polarity through establishment and maintenance of a resting membrane potential. Cells with polarized plasma membranes must buffer and adequately distribute certain ions, such as sodium (Na +), potassium (K +), calcium (Ca 2+), and chloride (Cl −) to establish and maintain this polarity. Integral ...

  9. Subthreshold membrane potential oscillations - Wikipedia

    en.wikipedia.org/wiki/Subthreshold_membrane...

    They have also been described and studied in layers V of the entorhinal cortex, [10] [11] [12] the inferior olive in vivo, [13] the olfactory bulb [14] and the dorsal cochlear nucleus. [15] These neurons have been a major input into the cerebellum, as well, and have been found to contribute to the overall generation of movement patterns. [5]