When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A Hilbert space is a vector space equipped with an inner product operation, which allows lengths and angles to be defined. Furthermore, Hilbert spaces are complete, which means that there are enough limits in the space to allow the techniques of calculus to be used. A Hilbert space is a special case of a Banach space.

  3. Stone's theorem on one-parameter unitary groups - Wikipedia

    en.wikipedia.org/wiki/Stone's_theorem_on_one...

    For instance, given an isolated quantum mechanical system, with Hilbert space of states H, time evolution is a strongly continuous one-parameter unitary group on . The infinitesimal generator of this group is the system Hamiltonian .

  4. Hilbert manifold - Wikipedia

    en.wikipedia.org/wiki/Hilbert_manifold

    In mathematics, a Hilbert manifold is a manifold modeled on Hilbert spaces. Thus it is a separable Hausdorff space in which each point has a neighbourhood homeomorphic to an infinite dimensional Hilbert space. The concept of a Hilbert manifold provides a possibility of extending the theory of manifolds to infinite-dimensional setting.

  5. Von Neumann algebra - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_algebra

    A von Neumann algebra that acts on a separable Hilbert space is called separable. Note that such algebras are rarely separable in the norm topology. The von Neumann algebra generated by a set of bounded operators on a Hilbert space is the smallest von Neumann algebra containing all those operators.

  6. Compact operator on Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Compact_operator_on...

    In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm.

  7. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    The Skorokhod integral operator which is conventionally denoted δ is defined as the adjoint of the Malliavin derivative in the white noise case when the Hilbert space is an space, thus for u in the domain of the operator which is a subset of ([,)), for F in the domain of the Malliavin derivative, we require

  8. Kirszbraun theorem - Wikipedia

    en.wikipedia.org/wiki/Kirszbraun_theorem

    The version for Hilbert spaces can for example be found in (Schwartz 1969, p. 21). [2] If H 1 is a separable space (in particular, if it is a Euclidean space) the result is true in Zermelo–Fraenkel set theory; for the fully general case, it appears to need some form of the axiom of choice; the Boolean prime ideal theorem is known to be ...

  9. Differentiation of integrals - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of_integrals

    The problem of the differentiation of integrals is much harder in an infinite-dimensional setting. Consider a separable Hilbert space (H, , ) equipped with a Gaussian measure γ. As stated in the article on the Vitali covering theorem, the Vitali covering theorem fails for Gaussian measures on infinite-dimensional Hilbert spaces. Two results of ...