Search results
Results From The WOW.Com Content Network
Electron-withdrawing groups exert an "inductive" or "electron-pulling" effect on covalent bonds. The strength of the electron-withdrawing group is inversely proportional to the pKa of the carboxylic acid. [2] The inductive effect is cumulative: trichloroacetic acid is 1000x stronger than chloroacetic acid.
Monochloroacetic acid (pK a =2.82), though, is stronger than formic acid, due to the electron-withdrawing effect of chlorine promoting ionization. In benzoic acid, the carbon atoms which are present in the ring are sp 2 hybridised. As a result, benzoic acid (pK a =4.20) is a stronger acid than cyclohexanecarboxylic acid (pK a =4.87).
With respect to acidity, a common trend to note is that, inductively, an electron-withdrawing substituent in the vicinity of an acidic proton will lower the pKa (i.e. increase the acidity) and, correspondingly, an electron-donating substituent will raise the pKa. [7] The reorganization of charge due to field effects will have the same result.
When this center is an electron rich carbanion or an alkoxide anion, the presence of the electron-withdrawing substituent has a stabilizing effect. Similarly, an electron-releasing group (ERG) or electron-donating group (EDG) releases electrons into a reaction center and as such stabilizes electron deficient carbocations .
The +M effect, also known as the positive mesomeric effect, occurs when the substituent is an electron donating group. The group must have one of two things: a lone pair of electrons, or a negative charge. In the +M effect, the pi electrons are transferred from the group towards the conjugate system, increasing the density of the system.
An electron withdrawing group (EWG) will have the opposite effect on the nucleophilicity of the ring. The EWG removes electron density from a π system, making it less reactive in this type of reaction, [ 2 ] [ 3 ] and therefore called deactivating groups .
The captodative effect is the stabilization of radicals by a synergistic effect of an electron-withdrawing substituent and an electron-donating substituent. [2] [3] The name originates as the electron-withdrawing group (EWG) is sometimes called the "captor" group, whilst the electron-donating group (EDG) is the "dative" substituent. [3]
For meta-directing groups (electron withdrawing group or EWG), σ meta and σ para are more positive than σ’. (The superscript, c, in table denotes data from Hammett, 1940. [11] [page needed]) For ortho-para directing groups (electron donating group or EDG), σ’ more positive than σ meta and σ para.